Carbon Nanotube Coatings for Enhanced Capillary-Fed Boiling from Porous Microstructures

نویسندگان

  • J. A. Weibel
  • S. S. Kim
  • S V. Garimella
  • S. V. Garimella
چکیده

Owing to their high intrinsic thermal conductivity, carbon nanotubes (CNTs) have previously been incorporated into a variety of thermal management applications to improve cooling performance. Implementation of controlled CNT growth techniques and functionalization methods are applied herein to enhance boiling heat transfer from the porous capillary wicking surfaces widely used in high heat flux thermal management devices. A microwave plasma chemical vapor deposition (MPCVD) synthesis process resulted in growth of a permeable CNT coating, and physical vapor deposition of copper over these nanotubes yielded the requisite hydrophilic wicking surface. An array of test samples was fabricated and then evaluated using an experimental test facility to determine the reduction in surface temperature resulting from CNT coating and micropatterning of the porous surfaces under two-phase heat transfer conditions with water as the working fluid. Both CNT coating and micropatterning techniques were able to provide significant performance enhancements, reducing the surface superheat up to 72% compared to baseline tests and eliminating disadvantageous temperature overshoot corresponding to boiling incipience. Such performance gains are attributable to the formation of nanoporous cavities which increase nucleation site density and high permeability vents through which vapor can readily depart the surface under vigorous boiling conditions. The synthesis procedures developed which result in the observed enhancement can be readily incorporated into currently employed devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Fractal Hierarchy of Single-Walled Carbon Nanotube Hydrophobic Coatings

A hierarchical structure is an assembly with a multi-scale morphology and with a large and accessible surface area. Recent advances in nanomaterial science have made increasingly possible the design of hierarchical surfaces with specific and tunable properties. Here, we report the fractal analysis of hierarchical single-walled carbon nanotube (SWCNT) films realized by a simple, rapid, reproduci...

متن کامل

Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes

Pool boiling experiments were conducted with three horizontal, flat, silicon surfaces, two of which were coated with vertically aligned multiwalled carbon nanotubes (MWCNTs). The two wafers were coated with MWCNT of two different thicknesses: 9 m (Type-A) and 25 m (Type-B). Experiments were conducted for the nucleate boiling and film boiling regimes for saturated and subcooled conditions with l...

متن کامل

Recent Advances in Vapor Chamber Transport Characterization for High Heat Flux Applications

Owing to their high reliability, simplicity of manufacture, passive operation, and effective heat transport, flat heat pipes and vapor chambers are used extensively in the thermal management of electronic devices. The need for concurrent size, weight, and performance improvements in high-performance electronics systems, without resort to active liquid-cooling strategies, demands passive heat sp...

متن کامل

Visualization of Vapor Formation Regimes during Capillary-Fed Boiling

The current study investigates capillary-fed boiling of water from porous sintered powder wicks used in emerging high-effective-conductivity vapor chamber heat spreaders intended for management of hot spots with heat fluxes exceeding 500 W cm -2 . Characterization of 1 mm-thick wicks composed of 100 μm sintered copper particles is performed in a test facility which replicates the capillary feed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014